CS 4803 / 7643: Deep Learning

Topics:
- Image Classification
- Supervised Learning view
- K-NN

Zsolt Kira
Georgia Tech
Python+Numpy Tutorial

This tutorial was contributed by Justin Johnson.

We will use the Python programming language for all assignments in this course. Python is a great general-purpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing.

http://cs231n.github.io/python-numpy-tutorial/
Plan for Today

• Image Classification
• Supervised Learning view
• K-NN

• **Next time:** Linear Classifiers
Image Classification
Image Classification: A core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

This image by Nikita is licensed under CC BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
The Problem: Semantic Gap

What the computer sees

An image is just a big grid of numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)
Challenges: Viewpoint variation

All pixels change when the camera moves!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Challenges: Illumination
Challenges: Deformation
Challenges: Occlusion
Challenges: Background Clutter
An image classifier

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.
Attempts have been made

Find edges --> Find corners

John Canny, "A Computational Approach to Edge Detection", IEEE TPAMI 1986

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
ML: A Data-Driven Approach

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

```python
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

airplane
automobile
bird
cat
deer
Supervised Learning

- Input: x (images, text, emails…)
 - Dimensionality d

- Output: y (spam or non-spam…)

- (Unknown) Target Function
 - $f: X \rightarrow Y$ (the “true” mapping / reality)

- Data
 - $(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)$

- Model / Hypothesis Class
 - $h: X \rightarrow Y$
 - $y = h(x) = \text{sign}(w^T x)$

- Learning = Search in hypothesis space
 - Find best h in model class.
Procedural View

• Training Stage:
 – Training Data \{ (x,y) \} \rightarrow f (Learning)

• Testing Stage
 – Test Data x \rightarrow f(x) (Apply function, Evaluate error)
Statistical Estimation View

• Probabilities to rescue:
 – X and Y are random variables
 – \(D = (x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N) \sim P(X,Y) \)

• IID: Independent Identically Distributed
 – Both training & testing data sampled IID from P(X,Y)
 – Learn on training set
 – Have some hope of generalizing to test set
Error Decomposition
Error Decomposition
Error Decomposition

Reality

Multi-class Logistic Regression
- Softmax
- FC HxWx3
- Input

Modeling Error

Optimization Error = 0

Estimation Error
Error Decomposition

VGG19
- Softmax
- FC 1000
- FC 4096
- Pool
- 3x3 conv, 512
- Pool
- 3x3 conv, 256
- 3x3 conv, 256
- Pool
- 3x3 conv, 128
- 3x3 conv, 128
- Pool
- 3x3 conv, 64
- 3x3 conv, 64
- Input

model class

Modeling Error

Reality

Optimization Error

Estimation Error
Error Decomposition

• Approximation/Modeling Error
 – You approximated reality with model

• Estimation Error
 – You tried to learn model with finite data

• Optimization Error
 – You were lazy and couldn’t/didn’t optimize to completion

• Bayes Error
 – Reality just sucks
Guarantees

• 20 years of research in Learning Theory oversimplified:

• If you have:
 – Enough training data D
 – and H is not too complex
 – then probably we can generalize to unseen test data
Learning is hard!

A Learning Problem

![Diagram](image)

\[y = f(x_1, x_2, x_3, x_4) \]

<table>
<thead>
<tr>
<th>Example</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Learning is hard!

- No assumptions = No learning

A Learning Problem

\[y = f(x_1, x_2, x_3, x_4) \]

<table>
<thead>
<tr>
<th>Example</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Vapnik-Chervonenkis dimension

\[
\text{TESTERR}(\alpha) = E\left[\frac{1}{2} |y - f(x, \alpha)| \right] \quad \text{TRAINERR}(\alpha) = \frac{1}{N} \sum_{k=1}^{N} \frac{1}{2} |y_k - f(x_k, \alpha)|
\]

- Given some machine \(f \), let \(h \) be its VC dimension.
- \(h \) is a measure of \(f \)'s power (\(h \) does not depend on the choice of training set)
- Vapnik showed that with probability \(1 - \eta \)

\[
\text{TESTERR}(\alpha) \leq \text{TRAINERR}(\alpha) + \sqrt{\frac{h(\log(2R/h) + 1) - \log(\eta / 4)}{R}}
\]

This gives us a way to estimate the error on future data based only on the training error and the VC-dimension of \(f \)
Shattering

- Machine f can *shatter* a set of points $x_1, x_2 .. X_r$ if and only if…

 For every possible training set of the form $(x_1,y_1), (x_2,y_2), \ldots (x_r,y_r)$
 …There exists some value of α that gets zero training error.

- Question: Can the following f shatter the following points?

- Answer: No problem. There are four training sets to consider

Slide by Andrew W. Moore
Shattering

- Machine f can *shatter* a set of points $x_1, x_2 \ldots X_r$ if and only if...

 For every possible training set of the form $(x_1,y_1), (x_2,y_2), \ldots (x_r,y_r)$

 There exists some value of α that gets zero training error.

- Question: Can the following f shatter the following points?

 $f(x,b) = \text{sign}(x.x-b)$

- Answer: No way my friend.
Traditional Approaches to Generalization

\[\hat{R}_n(\mathcal{H}) = \mathbb{E}_\sigma \left(\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i h(x_i) \right) \]

- Other measures exist: Rademacher Complexity
- For most neural networks with ReLU activations, the Rademacher Complexity is effectively 1, the maximum value. This measurement, then, is for the most part useless.
- These findings also disrupt Vapnik-Chervonenkis (VC)-dimension’s continuous analog fat-shattering dimension (a similar measure of the largest set of points that can be “shattered” – that is, perfectly predicted – by a hypothesis class) and have important considerations in the theory of uniform stability.
First classifier: Nearest Neighbor

```python
def train(images, labels):
    # Machine learning!
    return model

def predict(model, test_images):
    # Use model to predict labels
    return test_labels
```

Memorize all data and labels

Predict the label of the most similar training image
Example Dataset: CIFAR10

10 classes
50,000 training images
10,000 testing images

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

Nearest Neighbours
Nearest Neighbours
Instance/Memory-based Learning

Four things make a memory based learner:

• A *distance metric*

• *How many nearby neighbors to look at?*

• *A weighting function (optional)*

• *How to fit with the local points?*
1-Nearest Neighbour

Four things make a memory based learner:

• A distance metric
 – Euclidean (and others)

• How many nearby neighbors to look at?
 – 1

• A weighting function (optional)
 – unused

• How to fit with the local points?
 – Just predict the same output as the nearest neighbour.
k-Nearest Neighbour

Four things make a memory based learner:

• A *distance metric*
 – Euclidean (and others)

• *How many nearby neighbors to look at?*
 – *k*

• A *weighting function (optional)*
 – unused

• *How to fit with the local points?*
 – Just predict the average output among the nearest neighbours.
1-NN for Regression

Figure Credit: Carlos Guestrin
Distance Metric to compare images

L1 distance:

\[d_1(I_1, I_2) = \sum_p |I_1^p - I_2^p| \]

<table>
<thead>
<tr>
<th>test image</th>
<th>training image</th>
<th>pixel-wise absolute value differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 32 10 18</td>
<td>10 20 24 17</td>
<td>46 12 14 1</td>
</tr>
<tr>
<td>90 23 128 133</td>
<td>8 10 89 100</td>
<td>82 13 39 33</td>
</tr>
<tr>
<td>24 26 178 200</td>
<td>12 16 178 170</td>
<td>12 10 0 30</td>
</tr>
<tr>
<td>2 0 255 220</td>
<td>4 32 233 112</td>
<td>2 32 22 108</td>
</tr>
</tbody>
</table>

Add: 456

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
```python
import numpy as np

class NearestNeighbor:
    def __init__(self):
        pass

    def train(self, X, y):
        """ X is N x D where each row is an example. Y is 1-dimension of size N ""
        self.Xtr = X
        self.ytr = y

    def predict(self, X):
        """ X is N x D where each row is an example we wish to predict label for ""
        num_test = X.shape[0]
        # lets make sure that the output type matches the input type
        Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

        # loop over all test rows
        for i in xrange(num_test):
            # find the nearest training image to the i'th test image
            # using the L1 distance (sum of absolute value differences)
            distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
            min_index = np.argmin(distances)  # get the index with smallest distance
            Ypred[i] = self.ytr[min_index]  # predict the label of the nearest example

        return Ypred
```

Nearest Neighbor classifier
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N ""
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for ""
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred

Nearest Neighbor classifier
Memorize training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Nearest Neighbor classifier

For each test image:
Find closest train image
Predict label of nearest image
import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N """
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for """
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred

Q: With N examples, how fast are training and prediction?
Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

A: Train $O(1)$, predict $O(N)$
Nearest Neighbor classifier

Q: With N examples, how fast are training and prediction?

A: Train O(1), predict O(N)

This is bad: we want classifiers that are fast at prediction; slow for training is ok

import numpy as np

class NearestNeighbor:
 def __init__(self):
 pass

 def train(self, X, y):
 """ X is N x D where each row is an example. Y is 1-dimension of size N ""
 # the nearest neighbor classifier simply remembers all the training data
 self.Xtr = X
 self.ytr = y

 def predict(self, X):
 """ X is N x D where each row is an example we wish to predict label for ""
 num_test = X.shape[0]
 # lets make sure that the output type matches the input type
 Ypred = np.zeros(num_test, dtype = self.ytr.dtype)

 # loop over all test rows
 for i in xrange(num_test):
 # find the nearest training image to the i'th test image
 # using the L1 distance (sum of absolute value differences)
 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)
 min_index = np.argmin(distances) # get the index with smallest distance
 Ypred[i] = self.ytr[min_index] # predict the label of the nearest example

 return Ypred
What does this look like?
Nearest Neighbour

• Demo 1
 – http://vision.stanford.edu/teaching/cs231n-demos/knn/

• Demo 2
 – http://www.cs.technion.ac.il/~rani/LocBoost/
Parametric vs Non-Parametric Models

• Does the capacity (size of hypothesis class) grow with size of training data?
 – Yes = Non-Parametric Models
 – No = Parametric Models
K-Nearest Neighbors: Distance Metric

L1 (Manhattan) distance

\[d_1(I_1, I_2) = \sum_p |I_{1p}^p - I_{2p}^p| \]

L2 (Euclidean) distance

\[d_2(I_1, I_2) = \sqrt{\sum_p (I_{1p}^p - I_{2p}^p)^2} \]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
K-Nearest Neighbors: Distance Metric

Scaled Euclidian (L_2)

L_1 norm (absolute)

Mahalanobis

L_{∞} (max) norm

Slide by Andrew W. Moore
More Distance Metrics

\[
D(x, x') = \sqrt{\sum_i S^{-1}_i (x_i - x'_i)^2}
\]

Or equivalently,

\[
D(x, x') = \sqrt{(x - x')^T S^{-1} (x - x')}
\]

where

\[
S = \begin{bmatrix}
\sigma_1^2 & 0 & \cdots & 0 \\
0 & \sigma_2^2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_N^2
\end{bmatrix}
\]

Other Metrics…
- Mahalanobis, Rank-based, Correlation-based (Stanfill+Waltz, Maes’ Ringo system…)

Slide by Andrew W. Moore
Hyperparameters

What is the best value of k to use?
What is the best $distance$ to use?

These are hyperparameters: choices about the algorithm that we set rather than learn.
Hyperparameters

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about the algorithm that we set rather than learn

Very problem-dependent.
Must try them all out and see what works best.
Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

Your Dataset
Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset
Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data
Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: \(K = 1 \) always works perfectly on training data

Your Dataset

| train | test |

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

BAD: No idea how algorithm will perform on new data

| train | test |

Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test

Better!

| train | validation | test |

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Hyperparameters

Idea #4: **Cross-Validation**: Split data into **folds**, try each fold as validation and average the results.

<table>
<thead>
<tr>
<th>fold 1</th>
<th>fold 2</th>
<th>fold 3</th>
<th>fold 4</th>
<th>fold 5</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>fold 1</td>
<td>fold 2</td>
<td>fold 3</td>
<td>fold 4</td>
<td>fold 5</td>
<td>test</td>
</tr>
<tr>
<td>fold 1</td>
<td>fold 2</td>
<td>fold 3</td>
<td>fold 4</td>
<td>fold 5</td>
<td>test</td>
</tr>
</tbody>
</table>

Useful for small datasets, but not used too frequently in deep learning.
Setting Hyperparameters

Example of 5-fold cross-validation for the value of k.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \approx 7$ works best for this data)
Scene Completion [Hayes & Efros, SIGGRAPH07]
... 200 total

Hays and Efros, SIGGRAPH 2007
Context Matching

Hays and Efros, SIGGRAPH 2007
Graph cut + Poisson blending

Hays and Efros, SIGGRAPH 2007
Problems with Instance-Based Learning

• Expensive
 – No Learning: most real work done during testing
 – For every test sample, must search through all dataset – very slow!
 – Must use tricks like approximate nearest neighbour search

• Doesn’t work well when large number of irrelevant features
 – Distances overwhelmed by noisy features

• Curse of Dimensionality
 – Distances become meaningless in high dimensions
 – (See proof in next lecture)
k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

(All 3 images have the same L2 distance to the one on the left)

Original Boxed Shifted Tinted

Original image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
k-Nearest Neighbor on images never used.

- Curse of dimensionality

Dimensions = 1
Points = 4

Dimensions = 2
Points = 4^2

Dimensions = 3
Points = 4^3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Figure 1.16 Illustration of the curse of dimensionality. (a) We embed a small cube of side s inside a larger unit cube. (b) We plot the edge length of a cube needed to cover a given volume of the unit cube as a function of the number of dimensions. Based on Figure 2.6 from (Hastie et al. 2009). Figure generated by curseDimensionality.
In **Image classification** we start with a **training set** of images and labels, and must predict labels on the **test set**.

The **K-Nearest Neighbors** classifier predicts labels based on nearest training examples.

Distance metric and K are **hyperparameters**.

Choose hyperparameters using the **validation set**; only run on the test set once at the very end!
Wrap-Up

• Next time:
 – *The* building block of deep learning: Linear classifier!
 – Softmax/SVMs

• Given by Peter Anderson

 • Peter Anderson
 • Georgia Tech
 • www.panderson.me